Market demand, Willingness to pay

Conjoint Analysis

Statistically estimate consumers' psychological trade-offs through surveys

Illustration of Conjoint Analysis

See also: Closed-Ended Surveys, Data Mining, Multivariate Testing

Difficulty: Hard

Requires existing audience or product

Strength of evidence
35

Relevant metrics: Price elasticity, Attribute importance

Validates: Desirability

How: Determine how people value features, functions, and benefits of a product and statistically determine which combination influences decision-making more. Conjoint analysis is most often used in existing markets where product attributes are generally known by the customer as it's hard to determine values of unknowns.

Why: Conjoint analysis helps estimate psychological trade-offs consumers make and can reveal real or hidden drivers not apparent to consumers themselves. Use that knowledge to test specific mock-ups, prototypes, or products.

This card is part of the Validation Patterns printed card deck

A collection of 60 product experiments that will validate your idea in a matter of days, not months. They are regularly used by product builders at companies like Google, Facebook, Dropbox, and Amazon.

Get your deck!

Before the experiment

The first thing to do when planning any kind of test or experiment, is to figure out what you want to test. To make critical assumptions explicit, fill out an experiment sheet as you prepare your test. We created a sample sheet for you to get started. Download the Experiment Sheet.

Preparing the experiment

To perform a conjoint analysis, first narrow down the top 3-5 product attributes you want to test. Choosing which attributes to test and in what priority should be qualified by generative research such as Customer Discovery Interviews as a preparation to the experiment.

The more attributes you choose to test at the same time, the more responses are needed. As a general rule of thumb, the appropriate sample size can be calculated by:

Sample size = (Total count of tested attribute values – Attribute count) · 10

By mixing all possible variations of the various attributes and its values, you will generate all product attribute variations. There are several software tools that will help you do this.

Example case

To illustrate conjoint analysis in action, consider the following example examining what kind of phone plan would sell the best (source):

Attributes Possible attribute values
Brand Brand A
Brand B
Brand C
Brand D
Price $60/month
$75/month
$100/month
Minutes included 800
1,000
1,400
2,000
Rollover options No rollover of unused minutes
Unused minutes rollover for 1 month
Unused minutes rollover for 1 year
Call options No free calling based on contacts
Free calling to top 5 contacts
Free calling to top 10 contacts

A limited number of available product variations are chosen to be presented to participants side by side. One combination of product variations for participants to choose from could look like this:

Brand A Brand B Brand C
1,400 minutes 1,000 minutes 800 minutes
Unused minutes rollover for 1 month No rollover of unused minutes Unused minutes rollover for 1 year
No free calling based on contacts Free calling to top 5 contacts Free calling to top 10 contacts
Costs $100/month Costs $75/month Costs $60/month

To dertermine which attribute values are more powerful choice indicators, how often a product value was included in the product selected are counted and presented as the percentage of times the attribute value was included in the selected product.

For the Call options attribute, results could look like this:

Call Options Value
Free calling to top 10 contacts 50%
Free calling to top 5 contacts 20%
No free calling based on contacts 0%

For the Rollover options, results could look like this:

Rollover Options Value
Unused minutes rollover for 1 year 100%
Unused minutes rollover for 1 year 30%
No rollover of unused minutes 0%

In the example above, the Call Options had values ranging from 0 to 50 and the Rollover Options had values ranging from 0 to 100. This would indicate the Rollover Options was more important to participants than the Call Options.

Primarily used for existing markets

Conjoint analysis concerns itself about uncovering customer preferences (not actions). This is why using this methods primarily makes sense in existing markets, where product attributes are generally known by participants.

In the early stages where totally new attributes are introduced to participants, it can be hard for participants to comprehend and understand what they are choosing between. This is when results become inaccurate with the risk of producing false negatives.

This is why it makes sense to conduct significant explorative and generative research before starting a Conjoint Analysis experiment. This method is rarely used in early stage innovation products, but after product/market fit has been reached.

After the experiment

To make sure you move forward, it is a good idea to systematically record your the insights you learned and what actions or decisions follow. We created a sample Learning Sheet, that will help you capture insights in the process of turning your product ideas successful. Download the Learning Sheet.

Popular tools

The tools below will help you with the Conjoint Analysis play.

  • Conjoint.ly

    Can help narrow down feature selection, marginal willingness to pay, price elasticity of demand, pricing your products

  • Conjoint Survey Design Tool

    A free tool created in 2014, supplied by Harvard

  • SurveyGizmo

    Survey tool that includes a conjoint analysis tool

  • 1000 minds

    Scientifically used Conjoint analysis tool.

Examples

IMS Health

IMS Health regularly uses conjoint analysis to evaluate the importance of a product’s attributes to consumers. For a pharmaceutical product such as a drug, attributes may include price, dosing, efficacy, and side effects, among others.

Source: Conjoint analysis to understand preferences of patients...

Want to learn more?

Receive a hand picked list of the best reads on building products that matter every week. Curated by Anders Toxboe. Published every Tuesday.

No spam! Unsubscribe with a single click at any time.

Idea Validation playbooks